
Operational &
Secret Management

Operational and Secret
Management

Managing our Databricks environments and workflows effectively
has many benefits: improved collaboration and developer
workflow, better security, and greater control over governance.

Databricks comes with several tools to help with this:

• Repositories (or Repos) to source control our notebooks.

• DBUtils helps us interact with the management layer.

• Secret management to keep sensitive values secure.

• Databricks CLI to manage the environment through the terminal.

• DBConnect allows us to work in Databricks using common IDEs.

Repositories

Databricks Git Folders
• In any modern data project, version control is a must

• Easy to clone code directly into a workspace using Git Folders

• Setup Git Folders using Workspace tab -> Create -> Git Folder

• Better collaboration, easier rollback, and more control over changes

Source Control Providers

Repository UI

Branching & Deployment

Dev Test Prod

Feature Branch
Development Branch

Main Branch

Package Management

Installing Libraries

Code Distribution & Deployment
• Code Distribution

• Python Wheel
• Designed to organize and distribute code quickly
• Pre-compiled package for quick and fast installation
• Binary format, contains all the modules and files
• Single object that's easy to deploy
• Keeps code well-organized and reusable
• Easily integrates into CI/CD pipelines

• Databricks Asset Bundles (DAB)
• Package entire Databricks project – including resources and workflows etc
• Databricks recommended approach for code distribution
• Databricks Infrastructure-as-code (IaC) approach
• Configure and deploy as single package
• Automates deployment across environments
• Easily integrates into CI/CD pipelines

dev

test

prod

Databricks Utilities (dbutils)

Introduction to dbutils
• Built-in Databricks Utilities library
• Helps interact with the environment
• Run commands from notebooks
• Useful for files, secrets, jobs, and more

Uses for dbutils
• dbutils.help() to explore available commands

• dbutils.fs lets you manage files in DBFS

• dbutils.widgets enables notebook parameters

Demo: Using dbutils

Secret Management

Secrets Scope

User

ScopeA

AccountName

AccountKey

DBConnectionString

ScopeB

ServicePrincipalName

ServicePrincipalKey

Secrets are never displayed in
Databricks notebooks, even if

you have access!

Any attempt to display the
value will return [REDACTED]!

Secrets Retrieval
Secrets are retrieved through the “dbutils” function library within scala/python scripts

But administrated through the Databricks Command Line Interface (CLI)

Secrets - Databricks-Backed
• Managed and stored by Databricks
• Scopes created and managed via CLI only
• Access is controlled per scope

C:\> databricks secrets create-scope --scope Admins

C:\> databricks secrets put-secret Admins MySecret --string-value Pa$$word

C:\> databricks secrets list-secrets --scope Admins
Key Last Updated Timestamp
---------- --------------
MySecret 1564142221488

C:\> databricks secrets put-acl Admins terry@advancinganalytics.co.uk READ

• Less flexible than Key Vault scopes
• No need to manage external resources
• Good for managing multiple secrets directly

Secrets - Key Vault-Backed
https://<workspace-url>#secrets/createScope

An alternative is to use Key Vault. This is a better
approach as the vault can be shared by other
resources such as Data Factory, meaning you only
store your password in one place.

This makes managing expiring certificates, cycling
keys etc much easier!

User access to this scope is still managed
via the CLI

Some Useful Links…
Many administration tasks can be achieved via the CLI, but it’s not easy to automate
tasks using it, without having a dedicated machine set up. In these cases, we have a
couple of other options:

Databricks REST API
https://docs.databricks.com/api/azure/workspace/introduction

Databricks SDK (Python, Java, Go)
https://docs.databricks.com/en/dev-tools/sdk-python.html

Asking the Databricks assistant

https://docs.databricks.com/api/azure/workspace/introduction
https://docs.databricks.com/en/dev-tools/sdk-python.html

Demo: Secret Management

Command Line Interface (CLI)

1

2

3

4

Installing the CLI
You can install in a variety of ways
(see https://docs.databricks.com/en/dev-tools/cli/install.html)

On Windows, using Winget

From the terminal, run the following command:

From the terminal, type “databricks” to run the CLI

winget install Databricks.DatabricksCLI

https://docs.databricks.com/en/dev-tools/cli/install.html

Generate Workspace Token

Configuring the CLI
To configure the CLI manually, run the databricks configure command from the terminal:

C:\> databricks configure --token
Databricks host:
https://uksouth.azuredatabricks.net
Personal access token: [Token]

Alternatively, you can use System Environment Variables!

CLI Profiles
If you have multiple databricks workspaces to administer, you can define CLI “profiles”
as an alias for each different workspace

C:\> databricks configure --profile AdvAnalytics
Databricks Host: https://uksouth.azuredatabricks.net
Personal access token: [Token]

We can then run any CLI command using and input the --profile as a parameter, without having
to change any configuration

C:\> databricks clusters list --profile AdvAnalytics
ID Name State
0625-124059-taupe49 Processing TERMINATED

Common CLI Tasks
List all clusters in a workspace:
 databricks clusters list

Start a cluster:
 databricks clusters start --clusterid

List folders from the Workspace:
 databricks workspace list "/"

Upload directory of notebooks to a workspace:
 databricks workspace import_dir SOURCE_PATH TARGET_PATH

Help!
You can write any command followed by -h to return the help text for that command - if you’re not sure what a
specific command does, just type it with -h!

databricks clusters get -h

VSCode & Databricks Connect

Common Scenarios

We want to be able to
run our notebooks
locally against our

Databricks Environment

We want to be able to
embed Databricks into

custom applications

We want to be able to
debug from any IDE

What is Databricks Connect?

What is Databricks Connect
• Allows you to connect popular IDEs and custom applications to Databricks clusters

• Allows you to write custom Databricks Python code using Databricks Python Libraries:
SDK and Databricks Connect

• Allows you to write code using Spark APIs and run them remotely on a Databricks
cluster instead of in the local Spark session

0 1 . 0 2 . 0 3 .

What is Databricks Connect

D
at

ab
ric

ks
 C

on
ne

ct

IDEs / Notebooks

Data Applications

Your
Application

Partner Integrations

How to Utilize Databricks Connect
There are two ways to Utilize Databricks Connect:

• Python Libraries (directly in code)

• VSCode Extension (IDE)

Python Libraries - Install
• Install Databricks CLI: https://docs.databricks.com/en/dev-tools/cli/install.html

databricks configure --profile test

pip install pyspark == [version]

pip install databricks.connect == [version]

pip install databricks.sdk == [version]

• Authenticate and set profile name (used in your code):

• Install Python Packages:

The Databricks Connect major and minor package
version should match your Databricks Cluster Runtime

version, if not you will experience errors

https://docs.databricks.com/en/dev-tools/cli/install.html

Python Libraries – Configure & Usage
Once installed it is easy to quickly start writing Python, and have it integrated with your
Databricks workspace of choice

from dash import Dash, dash_table
from databricks.connect.session import DatabricksSession as SparkSession
from databricks.sdk.core import Config

config = Config(profile=“[local Databricks Profile]",
cluster_id=“[cluster id]")

spark = SparkSession.builder.sdkConfig(config).getOrCreate()
df = spark.table("samples.nyctaxi.trips").limit(10)

Import
Libraries

Set Configuration

Read Data

VSCode Extension
• Exclusive to VSCode, other IDEs require the use of the Python packages instead

• Allows developers to smoothly integrate their Databricks Workspace with local Folders/Repos

• Creates a synced folder in the Databricks Workspace (within Repos)

• Allows developers to test Notebooks locally

VSCode Extension - Install

Extensions tab

VSCode Extension – Configure

Databricks
Option Added

Set Workspace
Details

Set Cluster Details

Set Sync
Destination

Demo: Databricks Connect

Recap

Recap

• Use Databricks Git integration to version control our notebooks

• Install python package dependencies at the cluster leve

• Code distribution make code more accessible, maintainable & scalable

• Python Wheels is to organize and distribute code quickly as a single object

• Databricks Asset Bundles (DABs) allows you to package the entire Databricks project

• Manage secrets and secrets scopes, through the CLI and using dbutils.

• Use the Databricks CLI for regular tasks such as managing clusters and workspaces

• Use Databricks Connect to work with Databricks notebooks in VSCode

	Default Section
	Slide 1: Operational & Secret Management
	Slide 2: Operational and Secret Management

	Repositories
	Slide 3: Repositories
	Slide 4: Databricks Git Folders
	Slide 5: Source Control Providers
	Slide 6: Repository UI
	Slide 7: Branching & Deployment

	Package Management
	Slide 8: Package Management
	Slide 9: Installing Libraries
	Slide 10
	Slide 11: Code Distribution & Deployment

	dbutils
	Slide 12: Databricks Utilities (dbutils)
	Slide 13: Introduction to dbutils
	Slide 14: Uses for dbutils
	Slide 15: Demo: Using dbutils

	Secret Management
	Slide 16: Secret Management
	Slide 17: Secrets Scope
	Slide 18: Secrets Retrieval
	Slide 19: Secrets - Databricks-Backed
	Slide 20: Secrets - Key Vault-Backed
	Slide 21: Some Useful Links…
	Slide 22: Demo: Secret Management

	Command Line Interface (CLI)
	Slide 23: Command Line Interface (CLI)
	Slide 24: Installing the CLI
	Slide 25: Generate Workspace Token
	Slide 26: Configuring the CLI
	Slide 27: CLI Profiles
	Slide 28: Common CLI Tasks

	VSCode & Databricks Connect
	Slide 29: VSCode & Databricks Connect
	Slide 30: Common Scenarios
	Slide 31: What is Databricks Connect?
	Slide 32: What is Databricks Connect
	Slide 33: What is Databricks Connect
	Slide 34: How to Utilize Databricks Connect
	Slide 35: Python Libraries - Install
	Slide 36: Python Libraries – Configure & Usage
	Slide 37: VSCode Extension
	Slide 38: VSCode Extension - Install
	Slide 39: VSCode Extension – Configure
	Slide 40: Demo: Databricks Connect

	Recap
	Slide 41: Recap
	Slide 42: Recap
	Slide 43

