
Data
Transformations
Using PySpark for Data Manipulation



Transforming Data
• Conditional Functions

• String/ Regex Functions

• Complex Data Structures

• Dataframe Joins

• Datetime Functions

• User-Defined Functions



Conditional Functions



• When and Otherwise Functions

• Handling Nulls

Conditional Functions



When Conditions

df.withColumn(“testFlag”,when(col(“BuildingID”)== -1, lit(1)))

The when() function tests a Boolean condition, and returns the second argument 
when the condition is met, much like an IF() statement in Excel

The SQL equivalent of this would be a CASE statement

SELECT CASE WHEN BuildingID = -1 THEN 1 END AS testFlag



When Otherwise Conditions

df.withColumn(“testFlag”,
 when(col(“BuildingID”)== -1, lit(1))
 .otherwise(lit(0))
 )

We can add an otherwise() condition that is triggered if our original condition is 
not met. Our when().otherwise() function then similar to adding an “ELSE” clause 
to our SQL CASE statement

SELECT CASE WHEN BuildingID = -1 THEN 1
     ELSE 0 END AS testFlag



Isnull Tests

df.withColumn(“noBuildingIDFlag”,
 when(isnull(col(“BuildingID”)), lit(1))
 .otherwise(lit(0))
 )

If we need to test whether a record has a null value for a specific column, we can do this with the 
isnull() function. 

This tests the value the specified cell and returns true if it is null, false if it is not.

This is useful for building data validation tests and auditing data quality.



Demo: Conditional Functions
When

Otherwise

IsNull



LAB01 – Conditional Functions



Conditional Functions Summary
• Case statements can be reproduced with .when().otherwise()

• You can always just use CASE statements inside an expr()

• IsNull is a useful test



String/Regex Functions



String/Regex Functions
• Spark has useful string manipulation functions built in

• Regex can be very powerful for data cleansing & validation



Spark Constructs

df.withColumn(“myCol”,

ltrim() & rtrim()
trim()
lpad() & rpad()

regexp_replace(col(“phone"),“[^0-9]“,””)) 
regexp_extract(col(“email"),"(?<=@)[^.]+(?=\.)“,””)

)

Data Transformation Functions



Regexp_replace

df.withColumn(“myCol”,
 regexp_replace(col(“phone"),“[^0-9]“,””))
) 

We can use regexp_replace() to search for characters, strings or patterns within an 

input string, and replace them with another value.

This can be basic string matching, or can be complex regular expressions - it's a very 

useful function for cleaning data!



Regex Crash Course – Pattern Matching
• Firstly, regex is all about pattern matching, we can specify ranges of characters that 

regex will look for:

• [A-Z] - searches for individual characters that are uppercase

• [A-z] - searches for individual characters that are either upper or lowercase

• [0-9] - searches for numerical digits

• [A-z]+ - keeps matching characters until it fails to match

• “^” acts as a “not” – so we can use [^0-9] to say “not a numerical digit”

• Regex has the idea of a "capture group" - groups of characters that match what we 
are looking for, treated as a single match

• (hello) - searches for the string "hello"



Regex Crash Course – Lookaheads/Behinds
This is fairly advanced regex, but is incredibly valuable!

You can wrap your regex command with the following constraints:

•  (?<=hello) - positive lookbehind, the match MUST be preceded by this pattern

•  (?<!hello) - negative lookbehind, the match MUST NOT be preceded by this 
pattern

•  (?=hello) - positive lookahead, the match MUST be followed by this pattern

•  (?!hello) - negative lookahead, the match MUST NOT be followed by this 
pattern

(?<=@)([A-z0-9]+)

test@advancinganalytics.co.uk



Regexp_Extract

regexp_extract(col(“email"),"(?<=@)([A-z0-9]+)“,1)

The regexp_extract() function uses the same search functionality as the replace 

function. The patterns that are matched are returned as the results of the function – 

several different groups can be returned so we can specify which to use.



Demo: String/Regex Functions
regexp_replace()

regexp_extract()



LAB02 – Regular Expressions



String/Regex Functions Summary
• PySpark has several useful string manipulation functions, but regular expressions are 

the most powerful

• Regex is tricky at first, but it is worth investing time learning the basics!



Complex Data Structures



Complex Data Structures
• Working with JSON

• Splits & Explodes



What if the data isn’t tabular?

{
“File”: 001,
“Records”: [
 {“Id”:1, “Total”:1020, “Products”:[
     
 {“id”:1,”Name”:”Toy Car”},
     
 {“id”:2,”Name”:”Candy Bar”} 
     
 {“id”:3,”Name”:”Beer”}
     ]},
 {“Id”:2, “Total”:5032},
 {“Id”:3, “Total”:2033}
 ],
“Properties”:{“updated”:”2020-08-08”,”updatedby”:”Simon”}
}

Array

Nested Array

Struct



Working with Nested Structs
{

“File”: 001,

“Records”: […

 ],

“Properties”:{“updated”:”2020-08-08”,”updatedby”:”Simon”}

}

# Query the inner struct attributes
df = df.select(col(“Properties.updatedby”))
df.show()

Properties.updatedby

-----------------------------

Simon

This is using a syntax known as “Dot 
Notation” - Bracket Notation is also 
supported: Properties[“updatedby”]

Dot Notation is simpler if you are going 
down several nested levels!

Result:



JSON Inside Columns - from_json() Function
What if you’re working 
with a standard 
structured data set, but it 
contains unstructured 
data inside a column?

# Parse the embedded JSON inside the “Audit” column
df = df.withColumn(“JAudit”,from_json(col(“Audit”),jschema)
df = df.withColumn(“JAudit”,expr(“Audit:updatedBy”)

df = df.select(col(“ID”),col(“JAudit.updatedby”))

ID   | JAudit.updatedby

----------------------------------------------------------------------------

1   | Simon

2   | Simon

3   | Simon

Result:



Creating Arrays - Split() Function
Sometimes we get lists of data but held as a single object. 

Here we have a comma separated string, but we want to 

treat each purchase as a separate object!

# Parse the embedded JSON inside the “Audit” column
df = df.withColumn(“Items”,split(col(“Purchases”),”,”))

df.show()

Week   | Purchases    | Items

-------------------------------------------------------------------------------------------------------------------------

32   | Toy Car, Candy Bar, Beer   | [Toy Car, Candy Bar, Beer]

Result:



Flattening Complex Structures - Explode Function()

# Parse the embedded JSON inside the “Audit” column
df = df.withColumn(“Items”,explode(col(“Items”)))

df.show()

Week   | Purchases    | Items

-------------------------------------------------------------------------------------------------------------------------

32   | Toy Car, Candy Bar, Beer   | Toy Car

32   | Toy Car, Candy Bar, Beer   | Candy Bar

32   | Toy Car, Candy Bar, Beer   | Beer

Result:

Week   | Purchases   | Items

-------------------------------------------------------------------------------------------------------------------------

32   | Toy Car, Candy Bar, Beer  | [Toy Car, Candy Bar, Beer]

explode() Function takes a nested array and creates a new row for each item in that array. 

You can only explode one array at a time!



Demo: Working with JSON
Working with JSON

Dot Notation
JSON Parsing

Splits & Explodes



LAB03 – Working with JSON



Complex Data Structures Summary
• Spark is far better at working with complex structures than traditional relational 

databases

• Users can easily query JSON strings

• Decide when to explode/unpack data based on performance



Dataframe Joins



Dataframe Joins

• Basic Joins

• Complex Joins

• Cross Joins



Dataframe Joins

df1 = somedata
df2 = someotherdata

newdf = df1.join(df2, df1.column == df2.column, ‘jointype’)



Inner & Outer Joins

‘inner’ (default) 

‘outer’,

‘full’,

‘fullouter’,
‘full_outer’ 



‘leftouter’,

‘left’,

‘left_outer’

‘rightouter’,

‘right’,

‘right_outer’ 

Left & Right Joins



Semi Join

‘leftsemi’,

‘left_semi’

Bit like: 
“EXISTS”

“INTERSECT”



Anti Join

‘leftanti’,

‘left_anti’

Bit like
“NOT EXISTS”

“EXCEPT”



Cross Join

df.crossJoin()



Union

df.union()

There is a deprecated function called unionAll() – this is not the same 
as a SQL UNION ALL which removes duplicates!

To remove duplicate records, simply follow the union with a .distinct()



Demo: Dataframes Joins
Basic Joins

Cross Joins

Unions



Dataframe Joins Summary
• Joins in Spark are very similar to SQL, except they always take the full set of columns

• Remember semi and anti-joins – they are useful

• CrossJoins are discouraged, but can be done if needed



DateTime Functions



Datetime Functions
• Date Conversion

• Patterns

• Functions

• Date Manipulation



Parsing Dates
Spark has two primary date types:

• TimeStampType: Similar to SQL’s datetime, this is the full date and time. It can be 
formatted and presented in different manners but always contains the full context. 
Spark’s Timestamp type also includes a timezone reference, based on the session’s time 
zone if not explicitly set.

 “2019-10-18T00:05:56.000+0000”

• DateType: Similar to SQL’s date type, this is just the date reference 

Watch out when using inferSchema - unless it is in the 
exact default format, it may not recognize these 

date/Timestamp objects and treat them as strings



Parsing Dates - Conversion Functions

# Parse an existing string in format “2020-01-28” to Date into a new column
df = df.withColumn(“myDate”,to_date(col(“DateString”), ”yyyy-MM-dd”))

# Parse an existing string in format “01/28/2020 10:14” to TimeStamp
df = df.withColumn(“myTS”, to_timestamp(col(“TSString”), ”MM/dd/yyyy HH:mm:ss”))

There are several built-in functions for converting an existing column to a well-forced date/timestamp attribute:

Spark 3.0 has functions to build a date/timestamp out of multiple objects:

# Parse an existing string in format “2020-01-28” to Date into a new column
df = df.withColumn(“myDate”, expr(“make_date(YearString,MonthString,DayString”))



Parsing Dates - Datetime Patterns

Symbol Meaning Presentation Examples

y year year 2020; 20

D day-of-year number(3) 189

M/L month-of-year month 7; 07; Jul; July

d day-of-month number(3) 28

F week-of-month number(1) 3

a am-pm-of-day am-pm PM

h
clock-hour-of-am-pm (1-

12)
number(2) 12

K hour-of-am-pm (0-11) number(2) 0

k clock-hour-of-day (1-24) number(2) 0

H hour-of-day (0-23) number(2) 0

m minute-of-hour number(2) 30

s second-of-minute number(2) 55

S fraction-of-second fraction 978



Current Date Functions

It is very common that we would want to tag records or compare them to the current 
date/time. Spark has a couple of functions built in to help:

• current_date() - Returns the current date

• current_timestamp() - Returns the current timestamp, using the executor’s timezone 
unless overridden in parameters!

# Mark every record with the current date & time for auditing
df = df.withColumn(“audit_time”, current_timestamp())



Date Manipulation Functions
If we need to add/subtract from a date, or compare two dates, we have functions 
available very similar to those available in the SQL world:

• date_add() - Adds a number of days from a provided date/timestamp

• date_sub() - Subtracts a number of days (although you can also use date_add 
with negative)

• add_months() - Adds/Subtracts a number of months to the provided date

• months_between() - Returns the number of months between two dates

• datediff() - Returns the number of days between two dates



Demo: DateTime Functions
Parsing Dates

Date Conversion
Date Manipulation



DateTime Functions Summary
• Spark has many different functions built in to work with complex date manipulation

• The functions aren’t quite the same as T-SQL – so be careful

• You might need to convert incoming date to the right date format before getting 

started!



User-Defined Functions



User-Defined Functions

• What is a UDF

• Scala UDFs

• Python UDFs

• Vectorised Python UDFs

• Also known as a Pandas UDF.



UDF
Functions are great for encoding repeated tasks but come with some performance 

considerations!

from pyspark.sql.types import LongType

def doubleme(x):
  return x + x

spark.udf.register(“DoubleMe", doubleme, LongType())

Once registered, UDFs can be called on DataFrames directly, or via SQL

%sql 
select x, DoubleMe(x) as DoubleX from MyNumbers



Scala UDFs

Spark Dataframe 
(JVM)

UDF
(Scala)

Driver Program
(Scala)

Spark Dataframe 
(JVM)

UDF
(Scala)

Spark Session (JVM)



Python UDFs

Spark DataFrame 
(JVM)

UDF
(Python)

Driver Program
(Scala)

Spark DataFrame 
(JVM)

UDF
(Python)

Spark Session (JVM)



Vectorised Python UDFs

Spark DataFrame 
(JVM)

Vectorised UDF
(Python)

Driver Program
(Scala)

Spark DataFrame 
(JVM)

Vectorised UDF
(Python)

Spark Session (JVM)



Non-UDF Functions
Not all functions are poor performing. We can automate tasks at the dataframe 

level, and this is incredibly powerful!

def addAuditDate(df):

  df.withColumn(“_auditDate”,current_timestamp())
 return df

Once registered, UDFs can be called on DataFrames directly, or via SQL



SQL UDFs
A relatively new addition to Databricks is the ability to write SQL user defined functions. 
Unlike pyspark / R, these functions are passed directly to the Catalyst engine and 
compiled natively

CREATE FUNCTION doubleme(x INT COMMENT ‘Doubles any number')
  RETURNS INT
  
  RETURN x + x

If you absolutely have to write a user defined function – this will likely be the most 
performant!



UDF Summary
• User Defined Functions often have a performance hit

• It is very rare that we cannot use the inbuilt pyspark functions instead of a UDF

• If we absolutely have to use functions:

• Scala/SQL perform the best

• Then Vectorised UDFs

• Python UDFs will be slow



Demo: User-defined Functions



Recap



Recap
• Spark is a very powerful data transformation engine

• JSON & Complex Structures are handled easily

• Joins, Dates & Conditional Logic are familiar, but have their quirks

• Be careful with UDFs




	Default Section
	Slide 1: Data Transformations
	Slide 2: Transforming Data

	Conditional Functions
	Slide 3: Conditional Functions
	Slide 4: Conditional Functions
	Slide 5: When Conditions
	Slide 6: When Otherwise Conditions
	Slide 7: Isnull Tests
	Slide 8: Demo: Conditional Functions
	Slide 9: LAB01 – Conditional Functions
	Slide 11: Conditional Functions Summary

	String Functions
	Slide 12: String/Regex Functions
	Slide 13: String/Regex Functions
	Slide 14: Spark Constructs
	Slide 15: Regexp_replace
	Slide 16: Regex Crash Course – Pattern Matching
	Slide 17: Regex Crash Course – Lookaheads/Behinds
	Slide 18: Regexp_Extract
	Slide 19: Demo: String/Regex Functions
	Slide 20: LAB02 – Regular Expressions
	Slide 21: String/Regex Functions Summary

	Complex Data Structures
	Slide 22: Complex Data Structures
	Slide 23: Complex Data Structures
	Slide 24: What if the data isn’t tabular?
	Slide 25: Working with Nested Structs
	Slide 26: JSON Inside Columns - from_json() Function
	Slide 27: Creating Arrays - Split() Function
	Slide 28: Flattening Complex Structures - Explode Function()
	Slide 29: Demo: Working with JSON
	Slide 30: LAB03 – Working with JSON
	Slide 31: Complex Data Structures Summary

	Dataframe Joins
	Slide 32: Dataframe Joins
	Slide 33: Dataframe Joins
	Slide 34: Dataframe Joins
	Slide 35: Inner & Outer Joins
	Slide 36: Left & Right Joins
	Slide 37: Semi Join
	Slide 38: Anti Join
	Slide 39: Cross Join
	Slide 40: Union
	Slide 41: Demo: Dataframes Joins
	Slide 42: Dataframe Joins Summary

	DateTime Functions
	Slide 43: DateTime Functions
	Slide 44: Datetime Functions
	Slide 45: Parsing Dates
	Slide 46: Parsing Dates - Conversion Functions
	Slide 47: Parsing Dates - Datetime Patterns
	Slide 48: Current Date Functions
	Slide 49: Date Manipulation Functions
	Slide 50: Demo: DateTime Functions
	Slide 51: DateTime Functions Summary

	User-Defined Functions
	Slide 52: User-Defined Functions
	Slide 53: User-Defined Functions
	Slide 54: UDF
	Slide 55: Scala UDFs
	Slide 56: Python UDFs
	Slide 57: Vectorised Python UDFs
	Slide 58: Non-UDF Functions
	Slide 59: SQL UDFs
	Slide 60: UDF Summary
	Slide 61: Demo: User-defined Functions

	Recap
	Slide 71: Recap
	Slide 72: Recap
	Slide 73


