
Dynamic 
Reading & Writing
Automating Dataframes & Notebooks



Introduction to Metadata



What is Metadata?
• Metadata is data about data.

• Delta Tables store both data and metadata
• Rows = data etc
• Metadata = schema, source, timestamps etc

• Metadata gives insight into your data

• Metadata can drive ETL processes
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Code Automation

Process

Considerations:

• Code Complexity

• Metadata Management

• Shift in mindset

Metadata

• Reusable code for any dataset

• Faster and more consistent ETL

• Less manual effort, more control
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Acquiring Metadata
• Query a SQL Database
• Use Dataframe Results as Variables



Acquiring Metadata
We can do a lot using variable, but we don’t want to have to fetch configuration for each 
variable individually.

We commonly need to bring back dictionary objects or even query other sources such as a 
SQL Database.

However, if we query dataframes, the individual values are not accessible to the surface 
python layer… So how do we do this?



Using Widgets

We can implement widgets, which are parameters set at the notebook level. These allow us to pass 
parameters into the notebook from external sources.

The following Widget Types are available:

• Text

• Dropdown

• Combobox

• Multiselect

# Create a new Text Widget
dbutils.widgets.text([objectname],[default],[label text])

# Allocate the current widget value to a variable
myString = dbutils.widgets.get([objectname])



DEMO: Notebook metadata
• Creating reuseable code



Database Lookups

# Create a dataframe from a database source
df = (spark.read
    .format("jdbc")
    .option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver")
    .option("url",
      "jdbc:sqlserver://[server].database.windows.net;database=[database]")
    .option("user", [username])
    .option("password", [password])
    .option("query", [query])
    .load()
   )

We can create a dataframe over a SQL database directly in the same way we 
would read data from the lake. This returns a dataframe with the rows 
returned from the database.

As with all other sources, this will query the database each time an action is 
triggered, unless we have cached the dataframe first



Encapsulating Complexity
• With all the techniques we’ve looked at - we’re starting to build a fairly 

complex script just to load a dataframe! 

• Once we reach this point, we can split out some common functions to 
simplify our code. 

• The easiest first step is by running other notebooks!
• dbutils.notebook.run - this utility runs a Databricks notebook in a separate thread. We can 

drill down on the other notebook but objects created are not visible to the parent notebook
• %Run - this magic command runs the notebook in the same session context as our current 

notebook, so any variables, functions etc created are available for us to use!

• Both can take a map input of parameters, in case the child notebooks have 
widgets!



Running Child Notebooks

# Run an inline notebook in the same folder context in the workspace
%run ‘./MyChildNotebook’

# Run an inline notebook in a different folder under the same parent folder
%run ‘../OtherExamples/MyCousinNotebook’

# Run a notebook as a separate job
dbutils.notebook.run(“./MyChildNotebook”,{“widget1”:”True”})

We can return data from a separate child notebook using the following 
command:

 dbutils.notebook.exit(“myReturnString”)

We use this same method to pass results back to a calling job, whether 
through the REST API or via tools such as Data Factory



Passing Parameters



Azure Data Factory

Notebook

Python Script

Jar File
ADF uses Databricks Jobs behind the 
scenes, but takes away some of the 

work, and means you can orchestrate 
your notebooks with other tasks!



Azure Data Factory Linked Services



Azure Data Factory Pipelines



Execution Results



Azure Data Factory



Parameterising Dataframes



Structure of a Dataframe
df = (

 spark

 .read

 .option(“header”,True)

 .option(“sep”,”|”)

 .format(“csv”)

       .load(“abfss://container@storage.dfs.core.windows.net/data/customer”)

)



df = (

 spark

 .read

 .option(“header”,headers)

 .option(“sep”,separator)

 .format(format)

 .load(path)

)

Parameterise Strings
headers   = True

separator = “|”

format = “csv”

path = “abfss://file@path...”

What if there are different options?



ARGS & KWARGS
In Python, you can pass multiple arguments at once in two ways:

• *args - A single Asterix can be used to pass in a list of arguments, all 
for the same parameter. We might use this for passing in a list of 
columns to partition by, for example

• **kwargs - A dict of parameter names & associated values, this is 
very powerful for providing several settings at once



Options Argument & KWARGS
df = (

 spark

 .read

 .options(**config)

 .format(format)

 .load(path)

)

config = {“headers”:”True”, “sep”:“|”}

format = “csv”

path   = “abfss://file@path...”

Here we are using a different parameter called “options” which expects 
a dictionary/array of various config settings. 

We are using the ** operator to unpack our config variable into those 
settings

This means we can dynamically supply different sets of options!



F Strings
Python has a few methods for string formatting, the most modern approach being a 
technique called f-strings. These allow for variables to be injected into a string at 
runtime.
# Create a variable
myString = “World”

# Inject the variable into a new string and print it
print(f“This is the usual Hello {myString} example”)

Out[]: This is the usual Hello World example

This technique is incredibly useful for deriving lake paths, writing dynamic SQL 
commands, building out expression transformations and more. Use it!

You may find some older code using the .format() syntax. 
This does the same thing but is harder to read:

“hello {}”.format(myString)



DEMO: Parameterised 
Dataframes
• Creating reuseable code



LAB01: Writing a parameter 
driven notebook



Python Iterators
We often find ourselves with lists of transformations we want to apply - for example, 
we might want to make all string columns uppercase to standardise a dataset. In SQL, 
applying each of these transformations in serial would be incredibly inefficient.

Because of the lazy evaluating nature of spark - we can apply dataframe 
transformations quickly and efficiently in ways we wouldn’t in SQL!

# Create a variable with an array of column names
Columns = [“FirstName”,”LastName”,”Title”]

# Loop through the list
for colName in Columns:
 print(colName)



Iterators & Transformations
Certain transformations have an “expression” mode, where we can supply a 
Spark SQL string instead of python commands. This is incredibly useful when 
combined with iterators & variables!

# Create a variable with a list of column names
Columns = [“FirstName”,”LastName”,”Title”]

# Loop through the list, applying a dataframe transformation for each
for colName in Columns:
 SQL = f“UPPER({colName})”
 df = df.withColumn(colName, expr(SQL))



Writing Out
( 

 df

 .write

 .options(**writeConfig)

 .partitionBy(*partitionCols)

 .mode(writeMode)

 .format(fileFormat)

 .save(writePath)

)



LAB02: Metadata driven mini 
pipeline for two datasets



Recap



Recap
• Parameterise all the things

• We can’t inspect dataframe data without a collect()/take()/first()

• Practice with F-Strings, For Loops & IF Statements

• Store Metadata Outside of Databricks

• Build out function libraries over time
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