
Dynamic
Reading & Writing
Automating Dataframes & Notebooks

Introduction to Metadata

What is Metadata?
• Metadata is data about data.

• Delta Tables store both data and metadata
• Rows = data etc
• Metadata = schema, source, timestamps etc

• Metadata gives insight into your data

• Metadata can drive ETL processes

History of ETL Automation

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Code Automation

Process

Considerations:

• Code Complexity

• Metadata Management

• Shift in mindset

Metadata

• Reusable code for any dataset

• Faster and more consistent ETL

• Less manual effort, more control

In Our Scenario

OUTPUT

C
O

N
FI

G

PARAMETERS

Databricks
Notebook

Acquiring Metadata
• Query a SQL Database
• Use Dataframe Results as Variables

Acquiring Metadata
We can do a lot using variable, but we don’t want to have to fetch configuration for each
variable individually.

We commonly need to bring back dictionary objects or even query other sources such as a
SQL Database.

However, if we query dataframes, the individual values are not accessible to the surface
python layer… So how do we do this?

Using Widgets

We can implement widgets, which are parameters set at the notebook level. These allow us to pass
parameters into the notebook from external sources.

The following Widget Types are available:

• Text

• Dropdown

• Combobox

• Multiselect

Create a new Text Widget
dbutils.widgets.text([objectname],[default],[label text])

Allocate the current widget value to a variable
myString = dbutils.widgets.get([objectname])

DEMO: Notebook metadata
• Creating reuseable code

Database Lookups

Create a dataframe from a database source
df = (spark.read
 .format("jdbc")
 .option("driver", "com.microsoft.sqlserver.jdbc.SQLServerDriver")
 .option("url",
 "jdbc:sqlserver://[server].database.windows.net;database=[database]")
 .option("user", [username])
 .option("password", [password])
 .option("query", [query])
 .load()
)

We can create a dataframe over a SQL database directly in the same way we
would read data from the lake. This returns a dataframe with the rows
returned from the database.

As with all other sources, this will query the database each time an action is
triggered, unless we have cached the dataframe first

Encapsulating Complexity
• With all the techniques we’ve looked at - we’re starting to build a fairly

complex script just to load a dataframe!

• Once we reach this point, we can split out some common functions to
simplify our code.

• The easiest first step is by running other notebooks!
• dbutils.notebook.run - this utility runs a Databricks notebook in a separate thread. We can

drill down on the other notebook but objects created are not visible to the parent notebook
• %Run - this magic command runs the notebook in the same session context as our current

notebook, so any variables, functions etc created are available for us to use!

• Both can take a map input of parameters, in case the child notebooks have
widgets!

Running Child Notebooks

Run an inline notebook in the same folder context in the workspace
%run ‘./MyChildNotebook’

Run an inline notebook in a different folder under the same parent folder
%run ‘../OtherExamples/MyCousinNotebook’

Run a notebook as a separate job
dbutils.notebook.run(“./MyChildNotebook”,{“widget1”:”True”})

We can return data from a separate child notebook using the following
command:

 dbutils.notebook.exit(“myReturnString”)

We use this same method to pass results back to a calling job, whether
through the REST API or via tools such as Data Factory

Passing Parameters

Azure Data Factory

Notebook

Python Script

Jar File
ADF uses Databricks Jobs behind the
scenes, but takes away some of the

work, and means you can orchestrate
your notebooks with other tasks!

Azure Data Factory Linked Services

Azure Data Factory Pipelines

Execution Results

Azure Data Factory

Parameterising Dataframes

Structure of a Dataframe
df = (

 spark

 .read

 .option(“header”,True)

 .option(“sep”,”|”)

 .format(“csv”)

 .load(“abfss://container@storage.dfs.core.windows.net/data/customer”)

)

df = (

 spark

 .read

 .option(“header”,headers)

 .option(“sep”,separator)

 .format(format)

 .load(path)

)

Parameterise Strings
headers = True

separator = “|”

format = “csv”

path = “abfss://file@path...”

What if there are different options?

ARGS & KWARGS
In Python, you can pass multiple arguments at once in two ways:

• *args - A single Asterix can be used to pass in a list of arguments, all
for the same parameter. We might use this for passing in a list of
columns to partition by, for example

• **kwargs - A dict of parameter names & associated values, this is
very powerful for providing several settings at once

Options Argument & KWARGS
df = (

 spark

 .read

 .options(**config)

 .format(format)

 .load(path)

)

config = {“headers”:”True”, “sep”:“|”}

format = “csv”

path = “abfss://file@path...”

Here we are using a different parameter called “options” which expects
a dictionary/array of various config settings.

We are using the ** operator to unpack our config variable into those
settings

This means we can dynamically supply different sets of options!

F Strings
Python has a few methods for string formatting, the most modern approach being a
technique called f-strings. These allow for variables to be injected into a string at
runtime.
Create a variable
myString = “World”

Inject the variable into a new string and print it
print(f“This is the usual Hello {myString} example”)

Out[]: This is the usual Hello World example

This technique is incredibly useful for deriving lake paths, writing dynamic SQL
commands, building out expression transformations and more. Use it!

You may find some older code using the .format() syntax.
This does the same thing but is harder to read:

“hello {}”.format(myString)

DEMO: Parameterised
Dataframes
• Creating reuseable code

LAB01: Writing a parameter
driven notebook

Python Iterators
We often find ourselves with lists of transformations we want to apply - for example,
we might want to make all string columns uppercase to standardise a dataset. In SQL,
applying each of these transformations in serial would be incredibly inefficient.

Because of the lazy evaluating nature of spark - we can apply dataframe
transformations quickly and efficiently in ways we wouldn’t in SQL!

Create a variable with an array of column names
Columns = [“FirstName”,”LastName”,”Title”]

Loop through the list
for colName in Columns:
 print(colName)

Iterators & Transformations
Certain transformations have an “expression” mode, where we can supply a
Spark SQL string instead of python commands. This is incredibly useful when
combined with iterators & variables!

Create a variable with a list of column names
Columns = [“FirstName”,”LastName”,”Title”]

Loop through the list, applying a dataframe transformation for each
for colName in Columns:
 SQL = f“UPPER({colName})”
 df = df.withColumn(colName, expr(SQL))

Writing Out
(

 df

 .write

 .options(**writeConfig)

 .partitionBy(*partitionCols)

 .mode(writeMode)

 .format(fileFormat)

 .save(writePath)

)

LAB02: Metadata driven mini
pipeline for two datasets

Recap

Recap
• Parameterise all the things

• We can’t inspect dataframe data without a collect()/take()/first()

• Practice with F-Strings, For Loops & IF Statements

• Store Metadata Outside of Databricks

• Build out function libraries over time

	Default Section
	Slide 1: Dynamic Reading & Writing

	Introduction to Metadata
	Slide 2: Introduction to Metadata
	Slide 3: What is Metadata?
	Slide 4: History of ETL Automation
	Slide 5: Code Automation
	Slide 6: In Our Scenario

	Acquiring Metadata
	Slide 7: Acquiring Metadata
	Slide 8: Acquiring Metadata
	Slide 9: Using Widgets
	Slide 10: DEMO: Notebook metadata
	Slide 11: Database Lookups
	Slide 12: Encapsulating Complexity
	Slide 13: Running Child Notebooks

	Passing Parameters
	Slide 14: Passing Parameters
	Slide 15: Azure Data Factory
	Slide 16: Azure Data Factory Linked Services
	Slide 17: Azure Data Factory Pipelines
	Slide 18: Execution Results
	Slide 19: Azure Data Factory

	Parameterising Dataframes
	Slide 20: Parameterising Dataframes
	Slide 21: Structure of a Dataframe
	Slide 22: Parameterise Strings
	Slide 23: ARGS & KWARGS
	Slide 24: Options Argument & KWARGS
	Slide 25: F Strings
	Slide 26: DEMO: Parameterised Dataframes
	Slide 27: LAB01: Writing a parameter driven notebook
	Slide 28: Python Iterators
	Slide 29: Iterators & Transformations
	Slide 30: Writing Out
	Slide 31: LAB02: Metadata driven mini pipeline for two datasets

	Recap
	Slide 32: Recap
	Slide 33: Recap
	Slide 34

